Article 11216

Title of the article

AN ALUMINUM-BASED COMPOSITE MATERIAL WITH MULTI-WALLED CARBON NANOTUBES:
FABRICATION, STRUCTURE AND PROPERTIES

Authors

Bunakov Nikita Andreevich, Postgraduate student, research engineer, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), na_bunakov@mail.ru
Kozlov Dmitriy Vladimirovich, Candidate of physical and mathematical sciences, head of laboratory of materials science, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), kozlovdv@ulsu.ru
Golovanov Viktor Nikolaevich, Doctor of physical and mathematical sciences, professor, head of sub-department of material physics, vice president for academic research and information technology, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), golovanovvn@ulsu.ru
Klimov Evgeniy Semenovich, Doctor of chemical sciences, professor, head of sub-department of chemistry, composite materials technology and industrial ecology, Ulyanovsk State Technical University (32 Severniy Venets street, Ulyanovsk, Russia), eugen1947@mail.ru
Efimov Mikhail Sergeevich, Student, research assistant, Research Technological Institute named after S. P. Kapitsa, Ulyanovsk State University (42 Lva Tolstogo street, Ulyanovsk, Russia), efimovmix@mail.ru

Index UDK

621.762

DOI

10.21685/2072-3040-2016-2-11

Abstract

Background. Increased demands for strengthened conventional materials, capable of satisfying needs of technological advances, make the study and fabrication of composites, reinforced with dispersed particles or fibers, topical for domestic and foreign scientists. Addition of multi-walled carbon nanotubes (MWCNT) as a rein forcing component in a matrix metal allows obtaining a material with high performance characteristics. The purpose of the work is to study the effect of MWCNT on the microstructure and mechanical properties of pure aluminum.
Materials and methods. The aluminum powder PAD-6* (produced by Ltd. "VALCOM-PM") with 99.9% purity and pristine MWCNTs having 2% of amorphous carbon and graphite, produced by the MOCVD method (Metal Organic Chemical Vapor Deposition) and functionalized via acid treatment by the H2SO4/HNO3 mixture, were used in this study. Compacting of mixed materials was performed by spark plasma sintering at 600оС under 50 MPa of applied stress for 20 min in a vacuum. The following methods were used to study the composites: electron microscopy, micro-hardness Vickers test, static tension test.
Results. The authors studied the effect of FMWCNT on the microstructure and mechanical properties of composites. It is shown that functionalization allows homogeneous dispersing of MWCNTs in the Al powder. The maximal increase in micro-hardness and tensile strength has been registered at 0.1 wt.%.

Key words

powder metallurgy, multi-walled carbon nanotubes, functionalization, spark plasma sintering, microstructure, micro-hardness, tensile strength.

Download PDF
References

1. Rakov E. G. Nanotrubki i fullereny: ucheb posobie [Nanotubes and fullerenes: tutorial]. Moscow: Logos, 2006, p. 376.
2. Bulyarskiy S. V. Uglerodnye nanotrubki: tekhnologiya, upravlenie svoystvami, primenenie: monogr. [Carbon nanotubes: technology, properties control, application: monograph]. Ulyanovsk: Strezhen', 2011, p. 478.
3. Agarwal A., Bakshi S. R., Lahiri D. Carbon nanotubes – reinforced metal matrix composites. CRC Press., 2010, p. 325
4. Zhou S-M.,Zhang X.-B., Ding Z.-P.,Min C.-Y.,Xu G.-L.and Zhu W.-M.Composites A.2007,vol.38,pp.301–306.
5. Uozumi H., Kobayashi K., Nakanishi K., Matsunaga T., Shinozaki K., Sakamoto H., Tsukada T., Masuda C. and Yoshida M. Mater. Sci. Eng. A. 2008, vol. 495, pp. 282–287.
6. Bakshi S. R., Singh V., Seal S. and Agarwal A. Surf. Coat.Tech. 2009, vol. 203, pp. 1544–1554.
7. Laha T., Liu Y. and Agarwal A. J. Nanosci. Nanotech. 2007, vol. 7, pp. 1–10.
8. Tu J. P., Zhu L. P., Chen W. X., Zhao X. B., Liu F. and Zhang X. B. Trans. Nonferrous Met. Soc. China. 2004, vol. 14, no. 5, pp. 880–884.
9. Cha S. I., Kim K. T., Arshad S. N., Mo C. B. and Hong S. H. Adv. Mater. 2005, vol. 17, pp. 1377–1381.
10. Kol'tsova T. S., Shakhov F. M., Voznyakovskiy A. A., Lyashkov A. I., Tolochko O. V., Nasibulin A. G., Rudskoy A. I., Mikhaylov V. G. Zhurnal tekhnicheskoy fiziki [Journal of technical physics]. 2014, vol. 84, no. 11, pp. 47–51.
11. Kwon H., Kawasaki A. Advances in Composite Materials for Medicine and Nanotechnology. 2011, vol. 15, pp. 419–444.
12. Kurita H., Kwon H., Estili M., Kawasaki A. Materials Transactions. 2011, vol. 52, no. 10, pp. 1960–1965.
13. Kurita H., Estili M., Kwon H., Miyazaki T., Zhou W., Silvain J-F., Kawasaki A. Composites Part A: Applied Science and Manufacturing. 2015, vol. 68, pp. 133–139.
14. Zhou W., Bang S., Kurita H., Miyazaki T., Fan Y., Kawasaki A. Carbon. 2016, vol. 96, pp. 919–928.
15. Mortazavi M., Majzoobi G. H., Golikand A. N., Reihani A., Mortazavi S. Z., Gorji M. S. Rare metals. 2012, vol. 31, no. 4, pp. 372–378.
16. Liu Z. Y., Xu S. J., Xiao B. L., Xue P., Wang W. G., Ma Z. Y. Composites. Part A. 2012, vol. 43, pp. 2161–2168.
17. Ognev A. Yu. Uprochnenie alyuminiya i polimernykh materialov uglerodnymi nanotrubkami: avtoref. dis. kand. tekhn. nauk [Hardening of aluminum and polymer materials by carbon nanotubes: author’s abstract of dissertation to apply for the degree of the candidate of engineering sciences]. Novosibirsk: Izd-vo NGTU, 2011, p. 19.
18. Udupa G., Rao S. S., Gangadharan K. V. J. Material Sci. Eng. 2015, vol. 4, no. 3.
19. Stein J., Lenczowski B., Fréty N., Anglaret N. 18th International Conference on Composite Materials. Copenhagen, 2013, pp. 1–5.
20. Suryanarayana C. Non-Equilibrium Processing of Materials. Oxford: Elsevier Science Ltd, 1999.
21. Klimov E. S., Buzaeva M. V., Davydova O. A., Makarova I. A., Svetukhin V. V., Kozlov D. V., Pchelintseva E. S., Bunakov N. A. Russian Journal of Applied Chemistry. 2014, vol. 87, no. 8, pp. 1109−1113.
22. Klimov E. S., Davydova O. A., Buzaeva M. V., Makarova I. A., Kozlov D. V., Bunakov N. A., Nishchev N. A., Panov A. A., Pynenkov A. A. Bashkirskiy khimicheskiy zhurnal [Bashkir chemical journal]. 2014, vol. 21, no. 3, pp. 109–113.
23. Klimov E. S., Isaev A. V., Nishchev K. N., Pynenkov A. A., Gorin D. A., Bratashov D. N., Davydova O. A., Buzaeva M. V., Vaganova E. S. Izvestiya Samarskogo nauchnogo tsentra RAN [Proceedings of Samara University of RAS]. 2014, vol. 16, no. 4 (3), pp. 568–571.
24. Ob"edkov A. M., Kaverin B. S., Gusev S. A. et al. Poverkhnost' [Surface]. 2009, no. 7, pp. 61–66.
25. Miyata Y., Yanagi K., Maniwa Y., Kataura H. J. Phys. Chem. C. 2008, vol. 112, pp. 15997–16001.

 

Дата создания: 20.10.2016 14:11
Дата обновления: 21.10.2016 08:36